Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I.

نویسندگان

  • Roland Dosch
  • Daniel S Wagner
  • Keith A Mintzer
  • Greg Runke
  • Anthony P Wiemelt
  • Mary C Mullins
چکیده

Maternal factors control development prior to the activation of the embryonic genome. In vertebrates, little is known about the molecular mechanisms by which maternal factors regulate embryonic development. To understand the processes controlled by maternal factors and identify key genes involved, we embarked on a maternal-effect mutant screen in the zebrafish. We identified 68 maternal-effect mutants. Here we describe 15 mutations in genes controlling processes prior to the midblastula transition, including egg development, blastodisc formation, embryonic polarity, initiation of cell cleavage, and cell division. These mutants exhibit phenotypes not previously observed in zygotic mutant screens. This collection of maternal-effect mutants provides the basis for a molecular genetic analysis of the maternal control of embryogenesis in vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence analysis of zebrafish chondromodulin-1 and expression profile in the notochord and chondrogenic regions during cartilage morphogenesis

Chondromodulin-I (ChM-I) is suggested in higher vertebrate systems to function as a key regulatory protein for cartilage development. To further understand the process of chondrogenesis and the function of ChM-I, we have cloned the zebrafish cDNA for chondromodulin-1 (chm1) and have mapped the chm1 gene locus. The expression profile of chm1 was determined during zebrafish embryonic development ...

متن کامل

Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation.

During zebrafish development, zygotic gene expression initiated at the midblastula transition converts maternal information on embryo polarity into a transcriptional read-out. Expression of a homeobox gene, vega1, is activated at midblastula transition in all blastomeres, but is down-regulated dorsally before gastrulation. Ubiquitous expression of vega1 is maintained in bozozok mutants, in whic...

متن کامل

Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition.

Following fertilization, vertebrate embryos delay large-scale activation of the zygotic genome from several hours in fish and amphibians to several days in mammals. Externally developing embryos also undergo synchronous and extraordinarily rapid cell divisions that are accelerated by promiscuous licensing of DNA replication origins, absence of gap phases and cell cycle checkpoints, and preloadi...

متن کامل

The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish

Early steps of embryo development are directed by maternal gene products and trace levels of zygotic gene activity in vertebrates. A major activation of zygotic transcription occurs together with degradation of maternal mRNAs during the midblastula transition in several vertebrate systems. How these processes are regulated in preparation for the onset of differentiation in the vertebrate embryo...

متن کامل

Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos.

Development of animal embryos before zygotic genome activation at the midblastula transition (MBT) is essentially supported by egg-derived maternal products. Nodal proteins are crucial signals for mesoderm and endoderm induction after the MBT. It remains unclear which maternal factors activate zygotic expression of nodal genes in the ventrolateral blastodermal margin of the zebrafish blastulas....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2004